SUITE B CRYPTOGRAPHY

March 22, 2006 Elaine Barker ebarker@nist.gov 301-975-2911

Background

NIST algorithms not used for classified data
 NIST & NSA coordinating standardized public algorithms

 NSA selected a subset of NIST algorithms for classified applications through TOP SECRET: see http://www.nsa.gov/ia/

 NSA approval still required for implementations and systems that are used to protect classified information

CNSSP #15

Committee on National Security Systems Policy No. 15 128-bit AES can be used for up thru SECRET 192 & 256 bit AES can be used for up thru TOP SECRET http://www.cnss.gov/Assets/pdf/cnssp_15 _fs.pdf

Suite B

 FIPS 140 Cryptographic Module Validation required for unclassified applications

- NSA will evaluate products used for classified applications
 - Commercial COMSEC Evaluation Program (CCEP) and User Partnership Agreements (UPA)
 - Use Suite B algorithms
 - Provide extensive design guidance

Suite B – the algorithms

Encryption Algorithm AES (FIPS 197)

AES-128 up thru SECRET
AES-256 up thru TOP SECRET

Digital Signature (Draft FIPS 186-3)

ECDSA with 256-bit prime modulus up thru SECRET
ECDSA with 384-bit prime modulus up thru

TOP SECRET

Suite B – the algorithms (contd.)

Key Agreement (NIST SP 800-56A) - EC Diffie-Hellman or EC MQV with 256-bit prime modulus up thru SECRET - EC Diffie-Hellman or EC MQV with 384-bit prime modulus up thru TOP SECRET Hash Functions (FIPS 180-2) - SHA-256 up thru SECRET - SHA-384 up thru TOP SECRET

Comparable Security Strengths

Security Strength	Symmetric Key Algorithms	FFC (DSA, D-H, MQV)	IFC (RSA)	ECC (ECDSA, ECDH, ECMQV)
80	2TDEA ^[1]	1024	1024	160-223
112	3TDEA	2048	2048	224-255
128	AES-128	3072	3072	256-383
192	AES-192	7680	7680	384-511
256	AES-256	15360	15360	512+

^{III} The guarantee of at least 80-bits of security for 2TDEA is based on the assumption that an attacker has at most 2⁴⁰ matched plaintext and ciphertext blocks.

FFC = Finite Field Cryptography IFC = Integer Factorization Cryptography ECC = Elliptic Curve Cryptography

Comparable Security Strengths (contd.)

Security Strength	Digital Signatures and Hash-Only Applications	HMAC, Key Derivation Functions & Random Number Generation ¹
80	SHA-1 ²	
112	SHA-224	
128	SHA-256	SHA-1
192	SHA-384	SHA-224
256	SHA-512	SHA-256
> 256		SHA-384, SHA-512

¹ The security strength assumes that the random number generator has been provided with adequate entropy to support the desired security strength.

² A recent attack on SHA-1 claims that SHA-1 provides less than 80 bits of security for digital signatures; the claimed security strength for digital signatures is 63 - 69 bits.

Encryption Algorithms

	Unclassified Use		Suite B			
	Min. 80-bit Strength Through 2010	Min. 112-bit Strength After 2010	SECRET	TOP SECRET		
AES	AES					
128	\checkmark	\checkmark	\checkmark			
192	\checkmark	\checkmark				
256			\checkmark			
TDES						
2key TDES	\checkmark					
3key TDES	\checkmark					

Hash Functions (for Digital Signatures)

	Unclassified use		Suite B	
	Min. 80-bit Strength Through 2010	Min. 112-bit Strength After 2010	SECRET	TOP SECRET
SHA-1	\checkmark			
SHA-224	\checkmark	\checkmark		
SHA-256	\checkmark	\checkmark	\checkmark	
SHA-384			\checkmark	
SHA-512	\checkmark	\checkmark		

Digital Signatures

-	Unclassified use		Suite B			
	Min. 80-bit Strength Through 2010	Min. 112-bit Strength After 2010	SECRET	TOP SECRET		
DSA & RSA						
1024	\checkmark		- Service on a			
2048	\checkmark	\checkmark				
3072	\checkmark	\checkmark				
ECDSA						
160	\checkmark					
224	\checkmark	\checkmark				
256	\checkmark	\checkmark	$\sqrt{*}$			
384	\checkmark	\checkmark	$\sqrt{*}$	$\sqrt{*}$		
512						

* Prime Modulus curves only

Key Agreement

	Unclassified Use		Suite B		
	Min. 80-bit Strength Through 2010	Min. 112-bit Strength After 2010	SECRET	TOP SECRET	
Diffie-Hellman, MQV or RSA					
1024	\checkmark				
2048	\checkmark	\checkmark			
EC Diffie-Hellman or EC MQV					
160	\checkmark				
224	\checkmark	\checkmark			
256	\checkmark	\checkmark	$\sqrt{*}$		
384	\checkmark	\checkmark	$\sqrt{*}$	$\sqrt{*}$	
512	\checkmark	\checkmark			

* Prime Modulus curves only

Why AES-256 and ECC-384 in Suite B?

Theoretically:

AES-256 is equivalent to ECC-512

- AES-192 is equivalent to ECC-384

CNSSP # 15: AES-192 for TOP SECRET
 AES-192 not included in Suite B

AES-256 with ECC-384 seems a mismatch

- Little performance penalty for AES-256 over AES-192
- Many implementers choosing to use AES-256
- Significant performance cost for ECC-512 compared to ECC-384
- ECC-384 is strong enough for TOP SECRET
- Make life simple: use ECC-384, which is fast and strong enough, with AES-256 which is strong and fast enough.

Suite B: Bottom Line

- Some users need have both classified and unclassified applications
- National security applications need to use COTS products
- No fundamental difference between algorithms for SBU & classified clata
- NIST & NSA cooperation: cryptography for both SBU and classified data
- NSA approval of implementations required for classified data
 Expect NSA-managed keying material for classified applications
- Unclassified users must have CMVP-validated crypto modules
 - More choices of algorithms than in Suite B
 - Users typically generate their own keys

NIST Links

• NIST Computer Security Resources Center - http://csrc.nist.gov/ NIST Crypto toolkit - http://csrc.nist.gov/CryptoToolkit/ FIPS page <u>http://csrc.nist.gov/publications/fips/index.html</u> • NIST Security Special Publications http://csrc.nist.gov/publications/fips/index.html

Questions ?