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ABSTRACT

Instant Messaging software is now used in homes and businesses
by a wide variety of people. Many of these users would benefit
from additional privacy, but do not have enough specialized knowl-
edge to use existing privacy-enhancing software. There is a need
for privacy software to be easy to understand, with complicated
cryptographic concepts hidden from the user. We look at improv-
ing the usability of Off-the-Record Messaging, a popular privacy
plugin for instant messaging software. By using a solution to the
Socialist Millionaires’ Problem, we are able to provide the same
level of privacy and authentication as in older versions of OTR, but
we no longer require that the user understand any difficult concepts
such as keys or fingerprints.

Categories and Subject Descriptors

K.4.1 [Management of Computing and Information Systems]:
Public Policy Issues—Privacy; E.3 [Data]: Data Encryption; K.6.5
[Management of Computing and Information Systems]: Secu-
rity and Protection—Authentication; H.4.3 [Information Systems

Applications]: Communication Applications—Computer confer-

encing, teleconferencing, and videoconferencing; C.2.2 [Computer-

Communication Protocols]: Network Protocols—Applications

General Terms

Security, Algorithms, Human Factors

Keywords

Authentication, fingerprints, instant messaging, socialist million-
aires’ protocol

1. INTRODUCTION
As pointed out by Whitten and Tygar [15], it is very difficult to

develop security software for the general population. Many of the
basic tools used, including keys, fingerprints and digital signatures,
are difficult for an uninitiated user to understand. Further, when
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faced with such puzzling terms, many users will sooner ignore the
security features of a program than take the time to determine their
proper use.

This is especially true for Instant Messaging (IM) software. IM
clients allow users to chat with other known users online, and are
easy enough for children to understand and use effectively. As
such, they have become a very popular way for people to commu-
nicate both at home and, increasingly, at work. They are used by a
wide variety of people, most of whom know very little, if anything,
about security and privacy, and it is unlikely that all such people
will learn the basics of public-key cryptography before installing
their first IM client. Therefore there exists a need to provide secure
software that protects people’s privacy, while at the same time hid-
ing cryptographic details from the user, presenting instead a user
interface that is simple and intuitive.

There are serious consequences if this need is not met. As an
example, consider the case of a man-in-the-middle (MITM) attack.
Here, two honest parties, Alice and Bob, wish to chat with each
other. Unbeknownst to them, a third party, Eve, wishes to learn the
contents of their conversation. So when Alice and Bob establish
a connection, Eve simply ensures that they both establish connec-
tions with herself instead of each other. Eve may now pass mes-
sages from her connection with Alice to her connection with Bob,
so no messages go missing, but they are all read by Eve before
reaching their intended destination.

IM networks have an inherent weakness towards MITM attacks.
Since popular IM protocols tend to route all messages through a
central server, MITM attacks from this central point can be very ef-
fective. Even if messages are properly encrypted, such attacks can
succeed. For example, using Trillian’s SecureIM feature encrypts
messages but does not perform any authentication at all, so MITM
attacks are not detected. Another good example is the Jabber pro-
tocol, where messages are only encrypted between a client and the
central server, not from client to client. Thus an attack at the server
would still recover the contents of every message.

That said, there are good solutions available that prevent MITM
attacks and many others. One such solution, called Off-the-Record
Messaging (OTR) [1], is freely available online and compatible
with many of the popular IM protocols used today. Unfortunately, it
requires users to verify each other’s fingerprints in real time, which
is outside of the comfort zone of many others. Other tools are no
better. PGP requires even more knowledge of public-key cryptog-
raphy than OTR, and is difficult for new users to understand [15].
In this paper, we offer an improvement to OTR that would not affect
its security and privacy properties, but allow it to be used properly
with a much smaller amount of prior knowledge.

Section 2 explains the goals and history of the OTR protocol,



Section 3 explains the basic usability shortcoming of OTR thus far,
and Section 4 gives the protocol used to address this shortcoming.
Section 5 examines how to use the protocol securely, Section 6
describes the actual modification of OTR and Section 7 offers our
conclusions.

2. OTR MESSAGING PROTOCOL
In this section we describe the evolution of the Off-the-Record

Messaging protocol, from its inception to the present day.

2.1 Original OTR Protocol
The original OTR protocol was presented by Borisov, Goldberg,

and Brewer in 2004 [1]. It was motivated by the idea of two people,
say Alice and Bob, conversing face-to-face in a private room. In
this case, Alice may be assured that no one else may hear what she
says to Bob. She may also be assured that there is no evidence of
the conversation outside of Bob’s memory, so Bob will be unable
to prove to anyone what she said. Alice is then free to say whatever
she wishes, without having to worry about her words later being
used against her.

Today, many social and business conversations occur not in per-
son, but over the Internet using IM. OTR was developed as a way
to give the same level of privacy to an IM conversation as to a face-
to-face one.

To begin with, OTR uses a Diffie-Hellman (DH) key exchange
to establish a shared secret between Alice and Bob [5]. After this
exchange, they can use their shared secret to encrypt their mes-
sages, preventing any adversary from learning about their conver-
sation or launching a man-in-the-middle (MITM) attack. However,
a MITM attack is still possible during the DH key exchange it-
self. To prevent this, Alice and Bob sign their DH key exchange
messages using long-lived public keys. If Alice and Bob possess
public/private key pairs (vA, sA) and (vB , sB) respectively, then
the key exchange runs as follows:

A → B : SignsA
(gx), vA

B → A : SignsB
(gy), vB

If Bob knows Alice’s public key vA in advance, then he can check
that the first message he receives does indeed come from Alice, and
vice versa. Then both parties can compute the shared secret as gxy

and use it to communicate securely.
At this point Alice and Bob may begin sending each other en-

crypted messages. In order to limit the amount of information that
is compromised if an adversary determines the shared key, Alice
and Bob re-key as frequently as possible. Every time that Alice re-
ceives a message from Bob, she generates a new DH exponent and
adds it to her next outgoing message. Bob does the same, and pairs
of these new exponents are used to create new DH keys. Since the
keys change so quickly, key IDs are used to make sure that both
parties can identify which pair of exponents were used in any given
message. As new keys are created, old keys are securely erased,
rendering any messages signed under the old keys unreadable even
to Alice and Bob. Since the keys consisted of randomly chosen
DH exponents, they cannot be recreated by an attacker at a later
date, regardless of how much other information is known to the at-
tacker. This procedure gives OTR the property of perfect forward
secrecy (PFS), ensuring that future key compromises cannot reveal
the contents of old messages.

With this machinery in place, it should be infeasible for an ad-
versary to learn the contents of messages passed between Alice and
Bob. However, it is still possible for an adversary to change the
contents of messages in transit. In order to detect this, OTR mes-
sages are authenticated using SHA1-HMAC [13]. The MAC key

used is a hash of the decryption key for that message. This way,
anyone who can decrypt the message can also forge a correct MAC
tag, but an adversary unable to decrypt messages cannot.

The last desirable feature that was put into OTR was deniability.
So far, the protocol ensures that only Bob can read Alice’s mes-
sages, but we have not discussed the situation where Bob attempts
to prove the contents of the conversation to a third party. First of
all, simply by using symmetric encryption and HMAC, OTR guar-
antees that all proper messages were generated by someone who
knew the secret key; that is, either Alice or Bob. On its own, this
prevents Bob from proving anything, as he could simply have pro-
duced all of the messages himself. However, OTR goes beyond
this.

The specific encryption scheme used is AES in counter mode,
which is a stream cipher. This means that an adversary may alter
a bit of a ciphertext to cause a corresponding change to that bit in
the plaintext. Also, after a key is deleted, the corresponding MAC
key is published. This means that after the fact, anyone could alter
a ciphertext to be anything they wished and then generate a valid
MAC for it. This expands the deniability of Alice’s messages; as
soon as a MAC key is published, any message using that key could
have been generated not only by either Alice or Bob, but also by
anyone casually observing their communication. Any link between
Alice and the messages she sends under OTR is thus broken.

2.2 Attack on OTR version 1
About a year after the original publication, Di Raimondo, Gen-

naro, and Krawczyk [4] found an attack on OTR version 1. They
pointed out that Diffie et al.’s identity misbinding attack [6] would
work on the initial DH key exchange in OTR. This attack allows an
adversary Eve to interfere with the initial key exchange in such a
way that Alice and Bob still reach the same key at the end of the
protocol, but Alice believes that she is talking to Bob while Bob
believes that he is talking to Eve.

To do this, Eve runs a MITM attack, starting simultaneous con-
versations with both Alice and Bob. Messages from Alice to Bob
are replaced with identical messages signed by Eve, while mes-
sages from Bob to Alice carry their original signatures. The ex-
change given in [4] is:

A → E : g
x
, SignsA

(gx), vA

E → B : g
x
, SignsE

(gx), vE

B → E : g
y
, SignsB

(gy), vB

E → A : g
y
, SignsB

(gy), vB

Here, Alice still receives gy signed by Bob and correctly assumes
that she is talking to him. Bob, on the other hand, receives gx

signed by Eve and starts out assuming that he is talking to Eve
when he is actually talking to Alice.

Several existing protocols that defeat the identity misbinding at-
tack were suggested as possible improvements to OTR. We de-
scribe here the first such protocol, a version of SIGMA [12]. Here,
each party waits until the shared secret gxy is determined, and then
sends an encrypted message identifying themselves. Since Eve
does not know the shared secret, she should be unable to continue
her MITM attack, and both Alice and Bob correctly determine each
other’s identities. The exchange given in [4] is:

A → B : g
x

B → A : g
y

A → B : A, SignsA
(gy

, g
x), MACKm

(0, A), vA

B → A : B, SignsB
(gx

, g
y), MACKm

(1, B), vB



Again, the MAC key Km is a hash of gxy, so it is unknown to Eve.
By including this MAC, SIGMA prevents the identity misbinding
attack.

2.3 OTR version 2
OTR version 2 was released in 2005. The largest change in ver-

sion 2 was the reworking of the initial authenticated key exchange
(AKE). In response to the attack mentioned above, the AKE was
changed to a SIGMA variant, as suggested. Instead of using the
exact protocol recommended in [4], however, OTR adopted a vari-
ant that also hides the public keys of the participants from passive
adversaries. Where the public keys were formerly sent in the clear,
they are now encrypted using the DH shared secret.

The protocol still works by first establishing an unauthenticated
DH channel and then performing the authentication inside that chan-
nel. The channel itself uses a 64-bit secure session id based on the
shared secret, which is short enough to be vulnerable to brute-force
attacks. As a result, an initial commitment is used to ensure that
neither party can base their choice of gx on the other party’s value
of gy. The first few steps in the AKE are then:

Alice:

1. Randomly selects a 128 bit value r

2. Randomly selects a 320 bit value x

3. Sends AESr(g
x), SHA-256(gx) to Bob

Bob:

1. Randomly selects a 320 bit value y

2. Sends gy to Alice

Alice:

1. Computes s = (gy)x

2. Sends r to Bob

Bob:

1. Decrypts gx using r

2. Verifies that gx agrees with SHA-256(gx) received ear-
lier

3. Computes s = (gx)y

The purpose of r in the above steps is to satisfy an engineering re-
striction: many IM protocols enforce a maximum size on messages.
Ideally, Alice’s first step 3 would simply send SHA-256(gx) to Bob
as a commitment, and Alice’s second step 2 would send gx to open
the commitment. However, Alice’s second step 2 will be combined
with her first message in the steps below, which leaves no room to
send all of gx. So instead, we hide the value of gx by encrypting
it with r and sending it in the first message, and reveal r in Al-
ice’s second message. Note in particular that the encrypted version
of gx does not act as a commitment on its own; the hash is still
performing that function.

At this point, the shared secret s has been established. To per-
form authentication, Alice and Bob use SHA-256 hashes of s with
various prefixes to determine a series of MAC and AES keys. These
keys are then used to encrypt and verify the integrity of the in-
formation exchanged during the rest of the AKE. If (vA, sA) and
(vB , sB) are Alice and Bob’s public/private key pairs, then the pro-
tocol continues:

Alice:

1. Computes MAC keys a1, a2, b1, b2 and AES keys a3

and b3

2. Selects keyidA, a serial number to associate with gx

3. Computes MA = MACa1
(gx, gy, vA, keyidA)

4. Computes XA = vA, keyidA, signsA
(MA)

5. Sends AESa3
(XA), MACa2

(AESa3
(XA)) to Bob

Bob:

1. Computes MAC keys a1, a2, b1, b2 and AES keys a3

and b3

2. Uses a2 to verify MACa2
(AESa3

(XA))

3. Uses a3 to decrypt AESa3
(XA) and obtains XA =

vA, keyidA, signsA
(MA)

4. Computes MA = MACa1
(gx, gy, vA, keyidA)

5. Uses vA to verify signsA
(MA)

6. Selects keyidB , a serial number to associate with gy

7. Computes MB = MACb1(gy, gx, vB , keyidB)

8. Computes XB = vB , keyidB, signsB
(MB)

9. Sends AESb3(XB), MACb2(AESb3(XB)) to Alice

Alice:

1. Uses b2 to verify MACb2(AESb3(XB))

2. Uses b3 to decrypt AESb3(XB) and obtains XB =
vB , keyidB , signsB

(MB)

3. Computes MB = MACb1(gy, gx, vB , keyidB)

4. Uses vB to verify signsB
(MB)

At the end of this protocol, Alice and Bob possess a shared secret
s and have exchanged key IDs so they can begin the constant re-
keying process described in 2.1. Alice also knows Bob’s public
key vB , and is convinced that Bob knows the corresponding private
key sB . Bob has a similar assurance about Alice. Further, all of
these values were encrypted, so they are concealed from passive
adversaries.

3. AUTHENTICATION PROBLEM
Although the AKE in OTR is quite good in theory, it still suffers

from a practical drawback. In all of the schemes mentioned so far,
it is assumed that Alice and Bob know each other’s public keys
before the AKE begins. If they do not, then Eve can pretend to be
Bob and use her own key pair for signing, and Alice will have no
way to spot the deception.

This makes MITM attacks launched from a central IM server
particularly effective. If Eve controls the IM server, then she can
impersonate Alice to Bob and Bob to Alice for every conversation
over that server, learning the contents of every encrypted message
sent. Unless Alice and Bob know each other’s public keys, this at-
tack will never be detected. In fact, there exists a plugin for Jabber
servers to automatically launch MITM attacks on OTR conversa-
tions, called mod_otr [8].



3.1 Solving the authentication problem

To prevent this attack, each OTR user maintains a store of their
buddies’ public keys. If a buddy starts a new conversation using
a familiar public key, then OTR finds the match in the store and
authenticates automatically. If a match is not found in the store,
for example during the first conversation with a new buddy, the
user is prompted to verify that the key is correct. In this case OTR
displays the fingerprint (SHA-1 hash) of the unfamiliar key, and
asks the user to verify its authenticity out-of-band.

While this approach certainly works, it has several drawbacks.
First, it requires that users understand the basics of public-key cryp-
tography; if the user does not know what a fingerprint is, asking
them to verify one can only lead to confusion. Once the user gets
past the initial verification, however, all the messy cryptographic
details are hidden again and the user can benefit from OTR without
any idea how it works. Ideally, we would like the buddy verification
to be every bit as easy to use as the rest of OTR.

Second, the current OTR framework requires that fingerprint ver-
ification be done in real time. Since the key pairs used are specific
to OTR, users will generate new keys every time they install OTR
on a new computer, or reinstall it on their present one. This means
that even for well-known buddies, occasional and unpredictable fin-
gerprint verifications are necessary. And since the fingerprints are
essentially random, there is nothing that the user can do ahead of
time to speed up the verification. We would like to allow almost
all the work of verification to be done offline, at the users’ conve-
nience, to make the process less onerous for them.

If we are to hide the potentially confusing fingerprints from OTR
users, we must find a secure yet intuitive substitute. Note that any
given Alice and Bob starting an IM session already have many
shared secrets that have nothing to do with cryptography. For exam-
ple, if they meet in person and talk about OTR, they can easily pick
a shared password with which to identify each other later. Even if
they don’t pick a password, they know many details that would be
difficult for an attacker to guess. For example, where did Alice and
Bob first meet? Who introduced them? When did they last meet in
person?

A simple way to leverage this information would be for Alice
and Bob to simply ask each other some questions of this form after
the AKE has taken place and the conversation is encrypted. If each
answers to the other’s satisfaction, the conversation may continue.
This has severe privacy concerns, however: if Eve is launching a
MITM attack and she asks the first verification question, she can
force Alice to reveal an arbitrary secret fact known only to Alice
and Bob. She may be detected in doing so, but she will still have
gained important information of her choosing. We must be more
careful to use the shared information in a way that will not reveal it
to attackers.

4. SOCIALIST MILLIONAIRES’

PROTOCOL

Fortunately, a very similar problem has already been studied in
great detail. Our problem is simply a rephrasing of the Social-
ist Millionaires’ Problem, in which two millionaires wish to know
whether they happen to be equally rich [10]. This is itself a vari-
ant of Yao’s original Millionaires’ Problem [16], where the mil-
lionaires wish to know who is richer without revealing any other
information about their wealth.

An efficient solution to the Socialist Millionaires’ problem was
developed in 2001 by Boudot, Schoenmakers, and Traoré [2]. Un-
der the Decision Diffie-Hellman assumption, their protocol allows
two millionaires to learn only whether their fortunes are equal,
while revealing nothing about the fortunes themselves.

We adapted this Socialist Millionaires’ Protocol (SMP) to work
with OTR. Here, instead of comparing money, we are comparing
the shared information between Alice and Bob. Now an attacker
Eve can only learn information from Alice if she is correctly able
to guess the answer on the first try—otherwise, the protocol termi-
nates and she learns nothing. Of course, Eve could still attempt to
impersonate Alice to Bob and vice versa, passing SMP information
along unchanged in an attempt to get it to match. For this reason,
OTR actually compares a SHA-256 hash of the session ID, the two
parties’ fingerprints, and the original secret between Alice and Bob.
Any MITM attack made by Eve will cause Alice and Bob to hash
different fingerprints, and so the protocol will simply fail.

Another important property of this protocol is that if Alice and
Bob’s secrets are different, then neither Alice, Bob, nor any ob-
server learns any information about those secrets, save that they are
different. This allows Alice and Bob to use secrets with very low
entropy, since each guess by a MITM would have to be performed
online with either Alice or Bob.

For efficiency, when we altered the SMP for OTR we reduced
the number of messages as much as we could, and we omitted the
optional sections relating to fairness. Our modified protocol is de-
scribed below.

4.1 Setup
All computations in this protocol are done in a group G of large

prime order q. The exact group used is the 1536-bit modulus group
defined in RFC 3526, also known as Diffie-Hellman Group 5 [11].
The generator g1, known to both Alice and Bob before the protocol
begins, is equal to 2. Alice knows a secret x and Bob knows a secret
y, both of which are elements of Zq. The goal of the protocol is to
determine whether x = y.

A variety of zero-knowledge proofs are also required in the pro-
tocol. Simply put, a zero-knowledge proof allows Alice to demon-
strate the correctness of a certain fact to Bob without revealing any
additional information. For example, in the context of SMP, Al-
ice must at times demonstrate that a certain exponent used in her
calculations has not changed throughout the protocol, without re-
vealing the value of the exponent itself. All values passed between
Alice and Bob are accompanied by these zero-knowledge proofs
that show that the protocol is being followed faithfully. For a de-
scription of the specific proofs used, see section 2.3 of [2] or the
shorter explanation given in the appendix; all of the proofs used are
simple and efficient.

4.2 Generator Selection
Two additional generators, g2 and g3, are required for this pro-

tocol. Both are created through a DH exchange. Alice chooses
a2 ∈R Zq and Bob chooses b2 ∈R Zq. They then exchange g

a2

1

and g
b2
1 and each computes g2 = g

a2b2
1 .

They then repeat this process, choosing new values a3 and b3

and exchanging g
a3

1 and g
b3
1 to get g3 = g

a3b3
1 . Finally, Alice and

Bob save the values of a3 and b3 used in the generation of g3 for
use later in the protocol.

4.3 Blinding x and y

Alice picks an a ∈R Zq and computes (Pa, Qa) = (ga
3 , ga

1gx
2 ).

Bob chooses a b and (Pb, Qb) similarly. Pa, Qa, Pb, and Qb are
then exchanged.



4.4 Revealing whether x = y

Alice uses her value of a3 from 4.2 to compute Ra =
“

Qa

Qb

”a3

.

Bob similarly computes Rb =
“

Qa

Qb

”b3
and the values are ex-

changed. Alice and Bob may now compute Rab = Rb3
a = R

a3

b .
Now both parties know that:

Rab =

„

Qa

Qb

«a3b3

= (ga−b
1 g

x−y
2 )a3b3

= g
a−b
3 g

(x−y)a3b3
2

=

„

Pa

Pb

«

“

g
a3b3
2

”(x−y)

So to check whether x = y, they need only check whether Rab =
“

Pa

Pb

”

. Note that no party knows the value of
“

g
a3b3
2

”

, and that that

value is a random generator of G. Therefore, if x 6= y,
“

Rab ·
Pb

Pa

”

will be a random element of G, and if x = y, it will be 1. Since

the randomness of
“

Rab ·
Pb

Pa

”

does not depend on the entropy of

x and y, this protocol works well even if that entropy is very small.
Thus, even secrets such as common English words are acceptable.

5. SECURITY OF SMP
A full security analysis of the above protocol is given in [2],

where it is shown that the zero-knowledge nature of the protocol
means that attackers cannot learn anything about x and y apart
from their equality, unless they can also solve the Decision Diffie-
Hellman problem. Knowing this, if Alice runs the protocol, she
may be certain that no attacker has learned any information about
her secret, apart from whether it matches the attacker’s online guess.
In particular, the attacker cannot do an offline dictionary or brute-
force attack against the secret, even if it has very low entropy.
Therefore, every incorrect guess of the secret will cause an on-
line execution of the SMP to fail; this will alert the users to the
attacker’s presence if the attacker does not successfully guess the
secret in the first couple of tries.

Since the secrets used in OTR contain the fingerprints of both
Alice and Bob, as well as the user input, an attacker may not simply
relay SMP information between Alice and Bob in an attempt to
get it to match. Therefore, after a successful run of the protocol,
Alice knows that an attacker may neither learn her secret nor rely
on a third party’s knowledge of the secret. That is, for an attack to
succeed, the attacker must actually know the secret.

Now if Eve wants to defeat the authentication mechanism, she
has a couple of options. First, she may allow Alice to select a
shared secret but try to learn the secret before it is used. Second,
if the secret has not yet been selected, she may attempt to persuade
Alice to use a secret which is already known to Eve. The difficulty
of these tasks depends on the method that Alice and Bob use to
determine their secrets.

5.1 Choosing a secret over a secure channel
Suppose that Alice and Bob choose their secret over a secure

channel, for example, in person. In this case, Eve will have no way
to influence the selection of the secret, nor any idea what secret has
been chosen. At best, she can try to convince Alice to “remind” her
of the secret, or to choose a new one instead. If Alice agrees, but
does not wish to decrease the security of her secret, then she should
deliver the new secret or the reminder over the original channel as
well. Then Eve will be stuck in the same position as before.

The advantage of this method is that an arbitrary secret can be
selected when Alice and Bob happen to meet, even if they do not
have their OTR fingerprints with them at the time, or especially if
one or both of them have never used OTR at all at that point.

On the other hand, if Alice decides to negotiate a new secret over
an insecure channel, she should take care to follow the rules given
in the next section.

5.2 Choosing a secret over an insecure chan-
nel

Although meeting in person is more secure, it may not be practi-
cal if Alice and Bob live far apart or rarely visit each other. Even if
Alice and Bob can meet in person, or share another secure method
of communication, it may be more expensive, time-consuming, or
simply inconvenient, than using an insecure channel such as the
unauthenticated OTR conversation itself.

Suppose that Alice and Bob are chatting online using OTR and
decide to run the SMP, but have not previously selected a secret
and possess no channel more secure than their current conversation.
They can still select an appropriate secret in this case, but they will
be more vulnerable to attack.

In this case, if Eve is attempting to impersonate Bob or run a
MITM attack, she has a few options. The most direct is to attempt
to use a secret that has been sent in the contents of the OTR con-
versation itself. However, the online instructions that accompany
OTR specifically warn against sending the secret over the Internet,
whether over IM or email. If Eve requests that Alice do so, Alice
should become very suspicious of her.

Instead, Alice should send enough information over OTR to iden-
tify the secret to Bob, but not to a stranger. A suitable hint might be:
“The secret will be the name of the movie we watched last week.”
In this case, if Eve is a stranger, she will not know the secret unless
she happened to be present when they watched the movie. Like-
wise, a stranger would be unable to select a secret and give Alice a
hint such as the one above, that is tied to a private experience.

At this point, the only way that Eve could attack Alice is if she
had managed to learn some very specific details about Alice’s life.
Then she could attempt to choose a secret based on those details,
and send Alice an appropriate hint, similar to the one above. To
guard against this, Alice should make sure that she authenticates
Bob using a secret of her own choosing; this can be done either by
running the protocol twice, once with a secret chosen by her, and
once with a secret chosen by the other party, or else by combining
the two secrets into a single protocol run. Now if Eve wishes to
attack Alice, a few details are insufficient; she must know quite a
large amount of information to be able to guess a secret chosen by
Alice instead of herself.

5.3 Security results
It is clear that establishing a secret over a secure channel will

make Alice secure against all attackers, subject to the hardness
of the Decision Diffie-Hellman problem at the heart of SMP. If
she wishes to use a more convenient but less secure channel, she
should never give out the secret itself over the channel, and she
should make sure that at least one run of the protocol uses a secret
of her own choosing. In this case, Alice will be secure against all
automated attacks, as well as attacks from adversaries without an
intimate knowledge of her experiences with Bob.

This is much more secure than the approach using fingerprints,
which as mod_otr demonstrates, is often insecure against auto-
mated attacks by adversaries with absolutely no private knowledge
about Alice [8], as users simply fail to properly authenticate the
fingerprints over a separate channel.



Figure 1: The dialog box used to enter the SMP secret.

6. IMPLEMENTATION

6.1 Modifications
The original version of OTR was implemented as a plugin for the

popular IM client gaim. As gaim has been replaced by pidgin [7]
due to a trademark dispute with AOL [17], OTR naturally migrated
to become a plugin for pidgin instead. OTR itself required only two
major changes.

The first major change was the addition of message fragmenta-
tion. Most IM protocols have a maximum allowable size for any
transmitted message, usually on the order of 1–2 kB. Since some
of the messages exchanged during the SMP are larger than this, it
was necessary to include a mechanism to fragment and reassem-
ble any messages that would otherwise exceed the maximum size.
This is invisible to the user, who will simply no longer experience
“Message too large” errors.

The other major change was the addition of a Socialist Million-
aires’ authentication mechanism. The familiar fingerprint verifica-
tion popup may still be accessed through an “Advanced” option,
but the regular authentication mechanism is now the SMP. Select-
ing “Authenticate Buddy” from the menu brings up the dialog box
shown in Figure 1.

Here the user does not need to understand any cryptographic
ideas; they need only to understand the idea of a secret or a pass-
word. Instructions about when to authenticate and how to choose a
reliable secret are available through the “What’s This?” tab and on
the main OTR website [9]. These instructions include the recom-
mendations given in Section 5.

6.2 Performance
When implementing the SMP, messages were combined for ef-

ficiency reasons whenever possible. For example, Alice begins by
sending her halves g

a2

1 and g
a3

1 of the generators, and Bob can not

only reply with his own halves g
b2
1 and g

b3
1 of the generators, but

he may also compute and send his values of Pb and Qb. The com-
pressed protocol takes 5 steps, with Alice executing odd numbered
steps and Bob executing even numbered ones. Messages are sent
during the first four steps of the protocol; step 5 merely checks
proofs and computes the final result, but does not produce any val-
ues to transmit to Bob. On a computer with a 3 GHz processor
running Linux, Alice’s steps took a total of 1213 ± 3 ms of com-
putation time, while Bob’s steps took a total of 1212 ± 4 ms. That
the times are the same for Alice and Bob is not surprising, as they
perform essentially the same computations. Thus, the full protocol
takes about 2.4 seconds of processing time plus the time to transmit
four messages. A progress bar is displayed during the execution of
the SMP in order to keep the user apprised of how much of the
protocol has been completed.

7. CONCLUSION
We have implemented an enhancement for OTR which allows

users to perform proper authentication without exposing them to
terminology with which they are likely to be unfamiliar, such as
“fingerprints”. We expect this enhancement will make OTR more
accessible to the general population, and easier to use to protect
sensitive information.

As future work, we plan to perform a user study to evaluate our
design. Such a study on the new elements of the user interface
may be instructive, as it could identify refinements in structure or
language that would make the authentication process even more
straightforward and intuitive.
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APPENDIX

A. ZERO-KNOWLEDGE PROOFS IN SMP
As mentioned above, the solution to the SMP that we use relies

on a variety of zero-knowledge proofs. There are in fact three such
proofs, associated with the three steps of the protocol given earlier.

Each proof requires one or more evaluations of a hash function
which is diversified to prevent Alice and Bob from copying each
other’s proofs. In OTR, we use SHA-256 with a unique prefix. In
the following, let hn(x) represent hashing x with prefix n, that is,
hn(x) = SHA-256(n, x).

A.1 Generator Selection
When Alice sends Bob her half of g2 as g

a2

1 , she wants to assure
him that she knows the corresponding value of a2. To do this she
uses Schnorr’s protocol [14]. Alice selects r ∈R Zq and computes
W = gr

1 , c = h1(W ), and D = r − a2c mod q. Alice sends the
triple (ga2

1 , c, D) to Bob, who accepts only if c = h1(g
D
1 (ga2

1 )c).
When Bob sends his half of g2 to Alice, he computes a similar

proof using b2 and h2 in place of a2 and h1 respectively. This
process repeats to generate g3, this time using hash functions h3

and h4 and exponents a3 and b3.

A.2 Blinding x and y

Alice next selects an a and computes (Pa, Qa) = (ga
3 , ga

1gx
2 ).

To prove that she has followed the protocol, she must allow Bob to
verify that the same exponent a was used in computing both Pa and
Qa, and that she knows the secret x. We use Boudot, Schoenmak-
ers and Traoré’s extension to a protocol by Chaum and Pedersen to
do so [2, 3]. Alice selects r1, r2 ∈R Zq and computes W1 = g

r1

3 ,
W2 = g

r1

1 g
r2

2 , c = h5(W1, W2), D1 = r1 − ac mod q, and
D2 = r2 −yc mod q. She then sends (Pa, Qa, c, D1, D2) to Bob.

Bob is convinced only if c = h5(g
D1

3 P c
b , g

D1

1 g
D2

2 Qc
b).

Bob behaves similarly except that he uses y instead of x and h6

instead of h5.

A.3 Revealing whether x = y

Finally, Alice computes Ra =
“

Qa

Qb

”a3

. She would like to prove

to Bob that the value of a3 was the same one that was used to
compute g3. For this we use the unmodified protocol from Chaum
and Pedersen [3]. Alice selects r ∈R Zq and computes W1 = gr

1 ,

W2 =
“

Qa

Qb

”r

, c = h7(W1, W2), and D = r− a3c mod q. Alice

sends (Ra, c, D) to Bob, who accepts only if c = h7

„

gD
1 (ga3

1 )c,

“

Qa

Qb

”D

Rc
a

«

.

Bob does a similar calculation using b3 and h8.


